

Quantum phenomena in S_{eff} = 1/2 pyrochlores revealed by neutron scattering

CIFAR AZRIELI Global Scholars

Kate A. Ross Colorado State University

NCNR Neutron Scattering Summer School NIST, June 22, 2017

Outline

- Geometric Frustration
- General anisotropic exchange
 phase diagram for pyrochlores
- Phase competition in real pyrochlores: quantitative understanding using neutrons
 - $Yb_2Ti_2O_7$, $Er_2Ti_2O_7$, and $NaCaCo_2F_7$

Overchoice

Wikipedia:"**Overchoice** or **choice overload** is a cognitive process in which people have a difficult time making a decision when faced with many options."

Overchoice = Frustration

 Frustration from overchoice leads to interesting excited states

Geometric Frustration in 2D magnets

prefer ↑↓ alignment, but choice of 3rd spin direction is unclear

Triangular

Geometric Frustration in 3D magnets

freedom of choice for each tetrahedron leads to a macroscopic degeneracy: **NO Long Range Order**

Local Anisotropy on the Pyrochlore Lattice

- crystal symmetry requires local axes for each sublattice
- "z" (Ising) is along *local* <111> ("In-to" or "out-of" tetrahedron)

Example: Ising Ferromagnetic Pyrochlore Classical Spin Ice

ferromagnetic Ising exchange

$$H = J_{ZZ} \sum_{\langle ij \rangle} \vec{S}_{z_i} \cdot \vec{S}_{z_j}$$

Castelnovo, Moessner, Sondhi. Nature, 451 (2008)

gives "Ice Rules": Two-in Two-out
"Spin ice" chooses between many

- Spinice chooses between many disordered states obeying 2-in-2-out rules
- Excitations: deconfined emergent magnetic monopoles
- **Quantum spin ice:** tunneling between ice like ground states, produces additional emergent excitations

Magnetic Ground States in Pyrochlores (incomplete list!)

Castelnovo, Moessner, Sondhi. Nature, 451 (2008)

Emergent magnetic monopole excitations

Quantum Spin Liquids

AFM S=1/2 Heisenberg

Coulomb phase

T. Fennell, *Collection SFN* **13**, 04001 (2014)

O. Benton et al, Phys. Rev. B 86, 2002

Real Pyrochlores: playgrounds for frustration

Differences in single ion anisotropy is very important

	Single Ion Anisotropy	Interactions	Ground state
Ho, Dy	Ising	FM	spin ice
Tb	Ising	AFM	spin liquid
Gd	Heisenberg	AFM	partial order
Er	XY	AFM	"order by disorder"
Yb	XY	FM	"quantum spin ice"?

Real Pyrochlores: playgrounds for frustration

In 3d transition metals, usually Heisenberg — except Co²⁺

M ²⁺	Single Ion Anisotropy	Interactions	Ground state
Со	XY, S _{eff} =1/2	AFM	spin frozen only at low effective T
Mn	Heisenberg? S=5/2	AFM	spin frozen
Ni	Heisenberg? S=1	AFM	spin frozen
Fe	Heisenberg? S=5/2	AFM	spin frozen

General Anisotropic Exchange

General Anisotropic Exchange

Determining exchange interactions from field polarized states

Can extract quantitative values for J₁-J₄ Linear Spin Wave Theory + Neutron Scattering

> Field polarized (Semi-Classical)

Leon Balents

Unusual ground state (Quantum effects from effective S=1/2)

H || [110]

Paramagnetic

Lucile Savary

"Time of Flight" Inelastic Neutron Scattering

"Disk Chopper Spectrometer" (DCS)

@ NIST Center for Neutron Research

> Single Crystal Yb₂Ti₂O₇

7.5 cm

"Time of Flight" Inelastic Neutron Scattering

"Disk Chopper Spectrometer" (DCS)

@ NIST Center for Neutron Research

> Single Crystal Yb₂Ti₂O₇

7.5 cm

Volume of "Time of Flight" Data

Can slice through this volume in several directions

Volume of "Time of Flight" Data

Can slice through this volume in several directions

Volume of "Time of Flight" Data

Can slice through this volume in several directions

L. Savary, et al., Phys. Rev. Lett. 109 167201 (2012)

Yb₂Ti₂O₇: splayed ferromagnet with gapless "continuum" excitations

- Heat capacity anomaly at low temperatures, with some sample dependence
- "Best" samples (usually powders) show Ice-like splayed ferromagnetic order at 265 mK
- Despite this, excitations are relatively unstructured below T_c - unlike conventional magnons

Intensity (arb. units)

J. Gaudet, et al PRB 93, 064406 (2015)

Compare zero field spin waves to Linear Spin Wave Theory

Calculated zero-field spin waves

Measured Yb₂Ti₂O₇ 100 mK

Using Exchange parameters from Ross *et al*, Phys. Rev. X **1**, 021002 (2011)

Time-of-Flight Spectrometer (DCS)

Yb₂Ti₂O₇ on phase diagram

- Modified parameters from other groups^[1,2] suggest Yb₂Ti₂O₇ is right on the edge of AFM order
- Do quantum fluctuations arise from proximity to AFM state, i.e. competing orders?
- What role does the known sample dependence play?

All proposed parameters put Yb₂Ti₂O₇ close to a classical phase boundary with AFM order

 $J_1 = -0.09, J_2 = -0.22, J_3 = -0.29, J_4 = 0.01$

K.A. Ross, et al., Phys. Rev. X 1, 021002 (2011)

 $J_1 = -0.03, J_2 = -0.32, J_3 = -0.28, J_4 = 0.02$

[1] J. Robert, Phys. Rev. B 92, 064425 (2015)
[2] J. Thompson et al, arXiv:1703.04506 [cond-mat.str-el]

Er₂Ti₂O₇ on phase diagram

- Classical Monte Carlo agrees and puts ${\rm Er_2Ti_2O_7}$ squarely inside ψ_2
- Not as close to the phase boundary
 - But remember, *thermal* (and quantum) *fluctuations put it there*

 Helps to explain why no sample dependence has been observed over the 12 years it's been studied! (despite similar synthesis as Yb₂Ti₂O₇)

$NaCaCo_2F_7 \ and \ NaSrCo_2F_7$

CEF + SOC

 $S_{eff} = 1/2$

J.W. Krizan, R.J. Cava, PRB 89, 214401 (2014)

XY AFM pyrochlores with $S_{eff} = 1/2$

^{-1/}ln(τ_₀f)

Neutron scattering from frozen state

zig-zag pattern persists to finite energies

It is telling us about the **low energy fluctuations** in the **thermal spin liquid state**

- With MACS, we build up S(Q,w) using constant energy slices
- Can we interpret the **Q** dependence of finite energy slices?
- Fourier components of spin fluctuations away from static configuration

$$\mathcal{S}^{\alpha\beta}(\mathbf{Q},\boldsymbol{\omega}) \equiv \frac{1}{2\pi\hbar} \int dt \, e^{-i\omega t} \frac{1}{N} \sum_{ll'} e^{i\mathbf{Q}(\mathbf{r}_{l}-\mathbf{r}_{l'})} \left\langle S_{l}^{\alpha}(0) S_{l'}^{\beta}(t) \right\rangle$$

Inelastic scattering in frozen state

Same manifold of states as Er₂Ti₂O₇!

Ross,et al., Phys. Rev. B 93, 014433 (2016)

MACS spectrometer NCNR

Inelastic scattering in frozen state

Same manifold of states as Er₂Ti₂O₇!

MACS spectrometer NCNR

Ross, et al., Phys. Rev. B 93, 014433 (2016)

Inelastic scattering in frozen state

Same manifold of states as Er₂Ti₂O₇!

 ψ_3

Local Collinear AFM

Damped Spin Excitations

Ross,et al., Phys. Rev. B 93, 014433 (2016)

Damped Spin Excitations

Ross,et al., Phys. Rev. B 93, 014433 (2016)

Damped Spin Excitations

Above T_F , thermal spin liquid

- **Broad excitations** consistent with strongly correlated paramagnet
- Above *T_F*, Thermal spin liquid over range of nearly 140 K
- Highly *frustrated*:
 - $f = \theta_{CW}/T_F = 58$ in NaCaCo₂F₇
 - compared to f = 18 in $Er_2Ti_2O_7$

Above T_F , thermal spin liquid

- **Broad excitations** consistent with strongly correlated paramagnet
- Above *T_F*, Thermal spin liquid over range of nearly 140 K
- Highly *frustrated*:
 - $f = \theta_{CW}/T_F = 58$ in NaCaCo₂F₇
 - compared to f = 18 in $Er_2Ti_2O_7$

Above T_F , thermal spin liquid

- **Broad excitations** consistent with strongly correlated paramagnet
- Above *T_F*, Thermal spin liquid over range of nearly 140 K
- Highly *frustrated*:
 - $f = \theta_{CW}/T_F = 58$ in NaCaCo₂F₇
 - compared to f = 18 in $Er_2Ti_2O_7$

Comparison to Effective-Spin 1/2 Hamiltonian

Summary

- Frustrated pyrochlore materials based on R³⁺ earths and Co²⁺ act as *effective* S=1/2 - the "most quantum" they can be
- The same spin orbit coupling effects responsible for establishing S_{eff}=1/2 also lead to anisotropic exchange
- A general 4-parameter anisotropic exchange model can be used to describe S_{eff} =1/2 pyrochlores
- **Neutron scattering** allows us to probe the diffuse magnetic scattering and field-polarized spin waves, to extract parameters for real pyrochlores, and understand spin correlations
- Amazing diversity of ground states can be understood from the deduced relative positions in the unified phase diagram
- MACS, DCS, SPINS cold neutron spectrometers used for these studies

Thanks to...

Collaborators

- Bruce Gaulin
- Edwin Kermarrec
- Jonathan Gaudet
- Lucile Savary
- Leon Balents

- Collin Broholm
- Bob Cava
 - Jason Krizan
 - Steve Nagler
 - Matt Stone

- Jan Kycia
- Jeff Quilliam
- Juscelino Leao
- Jose Rodriguez
- Nick Butch
- Leland Harriger
- Yiming Qiu

Funding

- NSERC (McMaster)
- Department of Energy (JHU, Princeton, SNS)
- NSF (CHRNS)
- Colorado State University (startup)